Democratic Underground Latest Greatest Lobby Journals Search Options Help Login
Google

NIST Scientists Study How to Stack the Deck for Organic Solar Power

Printer-friendly format Printer-friendly format
Printer-friendly format Email this thread to a friend
Printer-friendly format Bookmark this thread
This topic is archived.
Home » Discuss » Topic Forums » Environment/Energy Donate to DU
 
OKIsItJustMe Donating Member (1000+ posts) Send PM | Profile | Ignore Sat Aug-01-09 05:25 PM
Original message
NIST Scientists Study How to Stack the Deck for Organic Solar Power
http://www.nist.gov/public_affairs/techbeat/tb2009_0728.htm#solar

NIST Scientists Study How to Stack the Deck for Organic Solar Power

A new class of economically viable solar power cells—cheap, flexible and easy to make—has come a step closer to reality as a result of recent work* at the National Institute of Standards and Technology (NIST), where scientists have deepened their understanding of the complex organic films at the heart of the devices.

Organic photovoltaics, which rely on organic molecules to capture sunlight and convert it into electricity, are a hot research area because in principle they have significant advantages over traditional rigid silicon cells. Organic photovoltaics start out as a kind of ink that can be applied to flexible surfaces to create solar cell modules that can be spread over large areas as easily as unrolling a carpet. They’d be much cheaper to make and easier to adapt to a wide variety of power applications, but their market share will be limited until the technology improves. Even the best organic photovoltaics convert less than 6 percent of light into electricity and last only a few thousand hours. “The industry believes that if these cells can exceed 10 percent efficiency and 10,000 hours of life, technology adoption will really accelerate,” says NIST’s David Germack. “But to improve them, there is critical need to identify what’s happening in the material, and at this point, we’re only at the beginning.”

The NIST team has advanced that understanding with their latest effort, which provides a powerful new measurement strategy for organic photovoltaics that reveals ways to control how they form. In the most common class of organic photovoltaics, the “ink” is a blend of a polymer that absorbs sunlight, enabling it to give up its electrons, and ball-shaped carbon molecules called fullerenes that collect electrons. When the ink is applied to a surface, the blend hardens into a film that contains a haphazard network of polymers intermixed with fullerene channels. In conventional devices, the polymer network should ideally all reach the bottom of the film while the fullerene channels should ideally all reach the top, so that electricity can flow in the correct direction out of the device. However, if barriers of fullerenes form between the polymers and the bottom edge of the film, the cell’s efficiency will be reduced.

By applying X-ray absorption measurements to the film interfaces, the team discovered that by changing the nature of the electrode surface, it will repulse fullerenes (like oil repulses water) while attracting the polymer. The electrical properties of the interface also change dramatically. The resultant structure gives the light-generated photocurrent more opportunities to reach the proper electrodes and reduces the accumulation of fullerenes at the film bottom, both of which could improve the photovoltaic’s efficiency or lifetime.

“We’ve identified some key parameters needed to optimize what happens at both edges of the film, which means the industry will have a strategy to optimize the cell’s overall performance,” Germack says. “Right now, we’re building on what we’ve learned about the edges to identify what happens throughout the film. This knowledge is really important to help industry figure out how organic cells perform and age so that their life spans will be extended.”

* D.S. Germack, C.K. Chan, B.H. Hamadani, L.J. Richter, D.A. Fischer, D.J. Gundlach and D.M. DeLongchamp. Substrate-dependent interface composition and charge transport in films for organic photovoltaics. Applied Physics Letters, 94, 233303 (2009), DOI: 10.1063/1.3149706.

Media Contact: Chad Boutin, boutin@nist.gov, (301) 975-4261

In this cross-section of an organic photovoltaic cell, light passes through the upper layers (from top down, glass, indium tin dioxide, and thermoplastic) and generates a photocurrent in the polymer-fullerene layer. Channels formed by polymers (tan) and fullerenes (dark blue) allow electric current to flow into the electrode at bottom. NIST research has revealed new information about how the channels form, potentially improving cell performance.

Credit: NIST
http://patapsco.nist.gov/ImageGallery/details.cfm?imageid=686">View hi-resolution image
Printer Friendly | Permalink |  | Top
leftrightwingnut Donating Member (434 posts) Send PM | Profile | Ignore Sat Aug-01-09 05:49 PM
Response to Original message
1. If we keep looking, we will find a way to tap it. And it will be great.
The sun (and first indirect wind/waves) is the only energy source that makes sense to use. The energy beaming down on us every day is all we have ever had, and will ever have. Fossil fuels are an energy trust fund saved up over millions of years that we are blowing in about one hundred. Crop fuels are probably too inefficient to support all of us.
Printer Friendly | Permalink |  | Top
 
DU AdBot (1000+ posts) Click to send private message to this author Click to view 
this author's profile Click to add 
this author to your buddy list Click to add 
this author to your Ignore list Wed Apr 24th 2024, 04:23 PM
Response to Original message
Advertisements [?]
 Top

Home » Discuss » Topic Forums » Environment/Energy Donate to DU

Powered by DCForum+ Version 1.1 Copyright 1997-2002 DCScripts.com
Software has been extensively modified by the DU administrators


Important Notices: By participating on this discussion board, visitors agree to abide by the rules outlined on our Rules page. Messages posted on the Democratic Underground Discussion Forums are the opinions of the individuals who post them, and do not necessarily represent the opinions of Democratic Underground, LLC.

Home  |  Discussion Forums  |  Journals |  Store  |  Donate

About DU  |  Contact Us  |  Privacy Policy

Got a message for Democratic Underground? Click here to send us a message.

© 2001 - 2011 Democratic Underground, LLC