Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

OKIsItJustMe

(19,938 posts)
Mon Nov 24, 2014, 07:48 PM Nov 2014

Biology trumps chemistry in open ocean

https://www.bigelow.org/index.php/news/current-news/biology-trumps-chemistry-open-ocean
[font face=Serif][font size=5]Biology trumps chemistry in open ocean[/font]

[font size=3]Single-cell phytoplankton in the ocean are responsible for roughly half of global oxygen production, despite vast tracts of the open ocean that are devoid of life-sustaining nutrients. While phytoplankton’s ability to adjust their physiology to exploit limited nutrients in the open ocean has been well documented, little is understood about how variations in microbial biodiversity -- the number and variety of marine microbes – affects global ocean function.

In a paper published in PNAS on Monday November 24, scientists laid out a robust new framework based on in situ observations that will allow scientists to describe and understand how phytoplankton assimilate limited concentrations of phosphorus, a key nutrient, in the ocean in ways that better reflect what is actually occurring in the marine environment. This is an important advance because nutrient uptake is a central property of ocean biogeochemistry, and in many regions controls carbon dioxide fixation, which ultimately can play a role in mitigating climate change.



To address the knowledge gap about the globally-relevant ecosystem process of nutrient uptake, researchers worked to identify how different levels of microbial biodiversity influenced in situ phosphorus uptake in the Western Subtropical North Atlantic Ocean. Specifically, they focused on how different phytoplankton taxa assimilated phosphorus in the same region, and how phosphorus uptake by those individual taxa varied across regions with different phosphorus concentrations. They found that phytoplankton were much more efficient at assimilating vanishingly low phosphorus concentrations than would have been predicted from culture research. Moreover, individual phytoplankton continually optimized their ability to assimilate phosphorus as environmental phosphorus concentrations increased. This finding runs counter to the commonly held, and widely used, view that their ability to assimilate phosphorus saturates as concentrations increase.

“Prior climate models didn’t take into account how natural phytoplankton populations vary in their ability to take up key nutrients,” said Martiny. “We were able to fill in this gap through fieldwork and advanced analytical techniques. The outcome is the first comprehensive in situ quantification of nutrient uptake capabilities among dominant phytoplankton groups in the North Atlantic Ocean that takes into account microbial biodiversity.”[/font][/font]
http://www.pnas.org/content/early/2014/11/21/1420760111
http://dx.doi.org/10.1073/pnas.1420760111 (Doesn’t work yet…)
Latest Discussions»Issue Forums»Environment & Energy»Biology trumps chemistry ...