Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

OKIsItJustMe

(19,938 posts)
Wed Sep 23, 2015, 05:35 PM Sep 2015

Better Trap for Greenhouse Gases

https://www.aip.org/publishing/journal-highlights/better-trap-greenhouse-gases
[font face=Serif][font size=5]Better Trap for Greenhouse Gases[/font]

[font size=4]Vertically aligned carbon nanotubes can chemically trap and store greenhouse gases more effectively than typical adsorption materials, according to a team in Germany and India[/font]

From the Journal: Journal of Chemical Physics
By AIP News Staff

[font size=3]WASHINGTON, D.C., September 22, 2015 -- Emissions from the combustion of fossil fuels like coal, petroleum and natural gas tend to collect within Earth's atmosphere as "greenhouse gases" that are blamed for escalating global warming.

So researchers around the globe are on a quest for materials capable of capturing and storing greenhouse gases. This shared goal led researchers at Technische Universität Darmstadt in Germany and the Indian Institute of Technology Kanpur to team up to explore the feasibility of vertically aligned carbon nanotubes (VACNTs) to trap and store two greenhouse gases in particular: carbon dioxide (CO₂ ) and sulfur dioxide (SO₂ ).

As the team reports in The Journal of Chemical Physics, from AIP Publishing, they discovered that gas adsorption in VACNTs can be influenced by adjusting the morphological parameters of the carbon nanotube thickness, the distance between nanotubes, and their height.

"These parameters are fundamental for 'tuning' the hierarchical pore structure of the VACNTs," explained Mahshid Rahimi and Deepu Babu, the paper's lead authors and doctoral students in theoretical physical chemistry and inorganic chemistry at the Technische Universität Darmstadt. "This hierarchy effect is a crucial factor for getting high-adsorption capacities as well as mass transport into the nanostructure. Surprisingly, from theory and by experiment, we found that the distance between nanotubes plays a much larger role in gas adsorption than the tube diameter does."

…[/font][/font]
Latest Discussions»Issue Forums»Environment & Energy»Better Trap for Greenhous...